Automated replication of cone beam CT-guided treatments in the Pinnacle(3) treatment planning system for adaptive radiotherapy.
نویسندگان
چکیده
INTRODUCTION Time-consuming manual methods have been required to register cone-beam computed tomography (CBCT) images with plans in the Pinnacle(3) treatment planning system in order to replicate delivered treatments for adaptive radiotherapy. These methods rely on fiducial marker (FM) placement during CBCT acquisition or the image mid-point to localise the image isocentre. A quality assurance study was conducted to validate an automated CBCT-plan registration method utilising the Digital Imaging and Communications in Medicine (DICOM) Structure Set (RS) and Spatial Registration (RE) files created during online image-guided radiotherapy (IGRT). METHODS CBCTs of a phantom were acquired with FMs and predetermined setup errors using various online IGRT workflows. The CBCTs, DICOM RS and RE files were imported into Pinnacle(3) plans of the phantom and the resulting automated CBCT-plan registrations were compared to existing manual methods. A clinical protocol for the automated method was subsequently developed and tested retrospectively using CBCTs and plans for six bladder patients. RESULTS The automated CBCT-plan registration method was successfully applied to thirty-four phantom CBCT images acquired with an online 0 mm action level workflow. Ten CBCTs acquired with other IGRT workflows required manual workarounds. This was addressed during the development and testing of the clinical protocol using twenty-eight patient CBCTs. The automated CBCT-plan registrations were instantaneous, replicating delivered treatments in Pinnacle(3) with errors of ±0.5 mm. These errors were comparable to mid-point-dependant manual registrations but superior to FM-dependant manual registrations. CONCLUSION The automated CBCT-plan registration method quickly and reliably replicates delivered treatments in Pinnacle(3) for adaptive radiotherapy.
منابع مشابه
A feasibility study on the use of MV-CBCT images for urgent palliative treatment planning
Introduction: The application of 3D volumetric imaging modalities in treatment planning of radiation therapy can provide more precisely define tumor localization, and computed tomography (CT) is the most common accepted method for treatment planning. Given the lack of a CT scanner stationed in all radiotherapy departments and equipping most of the medical linear accelerators wi...
متن کاملCalculation and Comparison of Heart Integral Dose in The Treatment of Esophagus Cancer with Three Photon Energies & Using CT Simulation and Treatment Planning System
Introduction: Esophageal cancer is one of the most frequently occurring cancers in Iran and having a high incidence rate among other countries. Radiotherapy is one of the three methods (surgery, radiotherapy and chemotherapy) for radical or palliative treatment of esophageal cancer. In this method of treatment, the organs such as heart and spinal cord are regarded as organs at r...
متن کاملCommissioning kilovoltage cone‐beam CT beams in a radiation therapy treatment planning system
The feasibility of accounting of the dose from kilovoltage cone-beam CT in treatment planning has been discussed previously for a single cone-beam CT (CBCT) beam from one manufacturer. Modeling the beams and computing the dose from the full set of beams produced by a kilovoltage cone-beam CT system requires extensive beam data collection and verification, and is the purpose of this work. The be...
متن کاملThe Impact of Residual Geometric Inaccuracies on Normal Organ Doses in Image Guided-Radiation Therapy of Prostate Cancer Using On-Board Kilovoltage Cone-Beam Computed Tomography
Introduction: The aim of this retrospective study was to evaluate the variations in delivered dose to the bladder, rectum, and femoral heads of prostate cancer patients during a course of treatment by image-guided radiation therapy (IGRT). Materials and Methods: Overall, 15 patients with prostate cancer were selected and. Each week, for each patient five consecutive cone beam computed tomograph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of medical radiation sciences
دوره 63 1 شماره
صفحات -
تاریخ انتشار 2016